Contour and Surface Measuring Machines
Inspection equipment from Carl Zeiss for the production floor.

Carl Zeiss offers a complete product line for industrial metrology. From the small “handy surf” for surface measurements up to the large systems used for measuring large vehicles - whatever your application, Carl Zeiss has the right metrology equipment. Our product line also offers highly accurate measuring machines for form, contour and surface measurements.

Maximum quality – from production to service

The finishing of vital machine components is performed by specialists. Quality control of our products follows the most stringent internal testing procedures which are more exacting than the specified standards.

Furthermore, Carl Zeiss also delivers first class service whether it concerns a metrology question, maintenance or repair. Thanks to our network of regional offices, you receive the expert help you need within a short time.

Machine strategy

The right system for every measuring task

- **Surfcom 1500**
 - The comfortable measuring station for surface measurements
- **Contourecord 1700/2700**
 - The flexible measuring station for contour measurements
- **Surfcom 1900/2900**
 - The combined measuring station for surface and contour measurements
- **Surfcom 2000**
 - The system for surface and contour measurements in one pass
- **Surfcom 5000**
 - Contour and surface technology for the highest demands

Measuring range

Sufficient range for the measuring task

- The base plate – columns – tracer driver combination can be adjusted as needed
- **Surfcom 1500/1900/2000** and Contourecord 1700/2700
 - Granite base plate 600 mm x 320 mm or 1000 mm x 450 mm
 - Optional column height 250 mm, 450 mm, 600 mm
 - Tracer driver 100 mm or 200 mm
- **Surfcom 5000**
 - Fully enclosed DX version with granite base plate 1000 mm x 450 mm, column height 500 mm, tracer driver 200 mm
The entire line of ZEISS contour and surface measuring machines features a modular design:

The machines are comprised of a base plate – column – feeder.

The systems can be equipped with a contour or roughness stylus-and-arm system, or upgraded later, depending on the measuring task. Furthermore, Y tables, Y driver units or CNC tables can be mounted for fully automatic contour and surface measurements, enabling the systems to meet specific customer needs.

The systems are based on the TIMS software platform that can be adjusted depending on the system of the modular hardware.

The design of the contour and surface measuring stations combined with the TIMS software strategy allows the user to easily operate the machine in the measuring lab or in production.

Ergonomic aspects were considered during development:

- Standard SD version features a simple and compact design
- Integrated component concepts with modular configuration
- Fully enclosed, mobile DX version

TIMS – the intelligent and future-oriented software strategy

The integrated software strategy for form, contour and surfaces facilitates the exchange of measurement data, e.g. from form or roughness analyses directly to contour analysis, in order to permit the evaluation of micro-contours according to specific requirements, for example. Typical features of contour analysis, such as calculating radii, angles and gaps, can be quickly and easily evaluated with TIMS.

The TIMS surface analysis contains all standard parameters as per ISO, DIN, CNO MO, ASME and JIS, as well as optional analysis methods such as “dominant waviness”.

Patented linear motor technology on all contour and surface measuring machines from Carl Zeiss

Linear motors and touch-free guideways eliminate vibration caused by the motor, gears and drive spindle. This allows maximum accuracies at very high measuring and travel speeds.

Contourecord 2700 and Surfcom 2900 are also equipped with an additional glass scale in the stylus-and-arm system for the highest demands in contour measuring.
TIMS – the intelligent and future-oriented software strategy.

Powerful platform

Our machines are equipped with the latest computer technology. The TIMS measuring station features a computer with network card, color monitor and printer, as well as high-quality measuring hardware. TIMS software is Windows-based.

Contour

Flexible TIMS measuring station for precise contour measurement and analysis

Large measuring range for large contours

Extensive TIMS software options for a broad range of workpieces

Easy operation with support functions

Automatic measuring in CNC operation, teach-in programming

CAD data and plan/actual comparison, analysis of aspheres, etc.

Roughness

Evaluation of profile, roughness and waviness according to standards

Fast surface inspection in the workshop, production and measuring lab

Easy use of the TIMS purity software

All standards, filters, curves and parameters

Tolerance monitoring, internal data processing

Variable layout of measurement protocol
Plan/actual comparison and best-fit adjustment

Fast comparison of measured data with nominal profiles. The best-fit function facilitates optimal alignment of the actual data to the nominal data for the comparison. The asphere analysis function is also available.

Before (↑) and after (↓) the best-fit-adjustment

Print

The print layout can be customized for extensive measurement logs.
- All profiles and zooms
- Result lists, measurement conditions, commentary
- Add your company’s logo, workpiece drawings and pictures
- Export protocol elements for other software applications

Data processing

<table>
<thead>
<tr>
<th>Surface</th>
<th>Profile display</th>
<th>Filter type</th>
<th>Measuring range/resolution</th>
<th>Critical wavelengths roughness</th>
<th>Critical wavelengths waviness</th>
<th>Tilt correction methods</th>
<th>Roughness parameters</th>
<th>Waviness parameters</th>
<th>Mean values</th>
<th>Tolerance comparison</th>
<th>Profile analysis</th>
<th>Learn/repeat function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R, P, W, WC, Wec and DIN 4776</td>
<td>Gaussian, (DIN 4777), DIN 4776, 2 RC phase-corrected, 2 CR</td>
<td>horizontal: 0.04 µm or 32,000 points, vertical: 0.02 µm–6.4 µm/0.0001</td>
<td>0.08–25 mm as well as variable</td>
<td>0.008–25 mm as well as variable</td>
<td>Compensating line (first half, beginning/end), compensating curve, spine. Without correction</td>
<td>ISO 4287 (97) Ra, Rq, Rz, R, Rp, Rpm, Rv, RC, Rz, RzDIN, Ry, RmaxDIN, PC, S, Sm, Rz; RDq, Ria, Ria, Ir, Rsk, Rku, tp, tp2, Rmr, Rd, Rk, Rpk, Mr, Mr2, Vo, K and in compliance with CNOMO, DIN, ASME, JIS</td>
<td>Wt, Wa, Wem, Wea, Wsm, ...</td>
<td>from up to 512 bits of data possible</td>
<td>possible</td>
<td>Actual profile, Abbott curve, amplitude density, Fourier analysis, Dominant Waviness</td>
<td>possible</td>
</tr>
</tbody>
</table>

Data processing

<table>
<thead>
<tr>
<th>Contour</th>
<th>Units</th>
<th>Magnification</th>
<th>Calculating functions</th>
<th>Output functions</th>
<th>Additional functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µm, µinch (selectable)</td>
<td>0.01–10,000,000 manual and automatic</td>
<td>Point, straight line, circle, angle, min./max. function, distance between coordinates, polar coordinates, point of intersection, symmetry</td>
<td>Calculating between profiles, set origin and X axis, rotation and translation of the coordinate system, etc.</td>
<td>Cartesian grid/polar coordinate display, angle-radius coordinate display, multiple overlay of profiles, combination/selection of profiles, tolerance comparison with nominal values, learn/repeat function</td>
</tr>
</tbody>
</table>
Contourecord 1700/2700
The flexible measuring station for contour measurements. Ease of use for efficiency.

- Fast, easy and precise completion of contour measuring tasks
- Patented linear motor technology
- High straightness accuracy and glass scale in the X axis
- Extensive accessories enable a large range of applications
- Automated calibration function
- Software compensates for stylus and stylus tip geometries
- Upgradeable to full CNC version through modularly adaptable CNC tables
- Also expandable for 2D and 3D surface measuring tasks
- Fully enclosed DX version with integrated active vibration damping
- Contourecord 2700 with additional glass scale in the Z axis for maximum demands on accuracy

Measurement

The “measurement window” offers easy access to all relevant functions, such as:
- Control of all measuring axes
- Enter workpiece data
- Specification of measurement conditions as well as the measuring point spacing
- Set automatic functions
- Automatic calibration function
- Selection of measured lengths via trace display

Analysis

The profile is available immediately after the measurement in an analysis window with a broad evaluation spectrum.
- Manual or automatic evaluation of elements such as radii, gaps, angles, etc.
- Best-fit circle and regression lines
- Repeat functions
- 10,000,000x zoom
- Max. 10 profiles with up to 100,000 profile points can be processed simultaneously
- Meaningful dimensioning
Surfcom 1500

The comfortable measuring station for surface measurements. Maximum performance, minimal effort.

- Fast, easy and precise completion of surface measuring tasks
- Patented linear motor technology
- Data transfer from Handysurf and Surfcom 130
- Wide range of accessories
- Upgradeable to full CNC version through modularly adaptable CNC tables
- Also expandable for contour measuring tasks
- Topography measurements to analyze 3DF surface data
- Fully enclosed DX version with integrated active vibration damping for the highest demands

Linear motor technology

Conventional motor

Gears

Drive spindle

Carriage

Reference base

Conventional system

At high measuring speeds, the vibrations generated by the motor, gears and drive spindle influence the measuring data.

Omitting unnecessary parts enables extremely fast measurements.

Advantages

- Contact and free-from-play guideway
- Higher accuracy
- Higher measuring and travel speed
- Low vibration
- Simple design
- Easy to maintain
Surfcom 1900/2900
The combined measuring station for surface and contour measurements. Easy to use.

- Fast, easy and precise completion of contour and surface measuring tasks
- Touch-free, patented linear motor technology
- High straightness accuracy and glass scale in the X axis
- Easy change of the stylus-and-arm system from contour to roughness, or vice versa, on the same tracer driver
- Extensive array of accessories for a wide range of applications
- Automated calibration function
- Software compensates for stylus and stylus tip geometries
- Upgradeable to full CNC version through modularly adaptable CNC tables
- Expandable for 2D and 3D surface measuring tasks
- Fully enclosed DX version with integrated active vibration damping
- Surfcom 2900 with additional glass scale in the Z axis for maximum demands on accuracy

Surfcom 1900 = Surfcom 1500 + Contourecord 1700
Surfcom 2900 = Surfcom 1500 + Contourecord 2700

Efficiency through automatic functions
E.g. for multiple measurements on single workpieces with the same clamping
Surfcom 2000
Contour and surface measurements in one run.
Short measuring times - high productivity.

- Contour and roughness measurements in one run
- Roughness detector with 5 mm deflection, 10 mm with doubled stylus length
- No unnecessary change of the stylus-and-arm system reduces measuring times and simplifies operation of the system
 - high productivity
- Friction-free, patented linear motor technology
 - Very high measuring and travel speeds
 - High straightness accuracy
 - Low background noise
 - Low maintenance and wear-and-tear
- Upgradeable to full CNC version through modularly adaptable CNC tables
- Topography measurements to analyze 3DF surface data

Typical applications: contour and roughness measuring tasks on small workpieces

Example application: asphere measurement on a lens
Surfcom 5000

Combined contour and surface measurements for high-end applications. Technology for the highest demands.

- Highest class of accuracy
- Contour and surface measurements in one step
- Laser interferometric stylus-and-arm system with a resolution of 0.31 nm
- New design eliminates environmental influences
- Friction-free, patented linear motor technology in the tracer driver
- Extremely high measuring and travel speeds (X = 60 mm/s, Z = 200 mm/s) reduce measuring times
- Cylindrical stylus-and-arm system permits high flexibility – even for complex applications
- Upgradeable to full CNC version with customer-specific table modules
- Topography measurements to analyze 3D surface data

Surfcom 5000 stylus-and-arm system for a measuring range of 13 mm

Performance data for Surfcom 5000

<table>
<thead>
<tr>
<th>Performance parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range/resolution</td>
<td>X = 200 mm</td>
</tr>
<tr>
<td></td>
<td>Z = 13 mm with standard stylus length</td>
</tr>
<tr>
<td></td>
<td>Z = 26 mm with doubled stylus length</td>
</tr>
<tr>
<td>Measuring speed</td>
<td>Roughness max. 3 mm/s</td>
</tr>
<tr>
<td></td>
<td>Contour/waviness max. 20 mm/s</td>
</tr>
<tr>
<td>Travel speed</td>
<td>X = 60 mm/s, Z = 200 mm/s</td>
</tr>
<tr>
<td>Measuring accuracy</td>
<td>X = ± (0.2 + L/1000) µm, L = Measuring length in mm</td>
</tr>
<tr>
<td></td>
<td>Z = ± (0.2 + H/1000) µm, H = Measuring length in mm</td>
</tr>
<tr>
<td>Straightness accuracy</td>
<td>X = 0.05 + 3 L/100000 µm, L = Measuring length in mm</td>
</tr>
<tr>
<td>Data point density per measurement</td>
<td>max. 150,000</td>
</tr>
<tr>
<td>Resolution</td>
<td>X = 0.54 nm, Z = 0.31 nm</td>
</tr>
</tbody>
</table>
The “building set” contains three modules: the positioning stage covers the Y direction; two additional rotary tables are used to position the workpiece in the XY and ZX planes. The main advantage is the combination of table modules, depending on need, to achieve motorization of each axis for alignment and positioning of the workpiece. For more complex measuring tasks, the level of automation can be easily adjusted with a new table module. Thus, customer-specific expansion of the measuring system up to a full CNC version of the Contourecord and Surfcom lines offers maximum productivity.

- Increase in performance and quality
- Save capacity
- Maximum productivity
- Modular construction for customer-specific measuring tasks
- Can be modified later
- No special instruments required
- Can be combined with all Contourecord and Surfcom systems
- Programmable with Teach-in and TIMS software
The third dimension: 3DF topography

3DF topography software with a variety of evaluation possibilities for the visualization of specific surface features

- Y tables as external tracer driver for acquisition of 3DF surface data
- Y DRIVER directly on the tracer driver for acquisition of 3DF surface data on oversized workpieces

- High measuring and travel speeds resulting from patented linear motor technology
- Data acquisition by means of an external Y table or with Y DRIVER directly on the tracer

Mountains Technology software:

- 3D display and analysis of topographical measuring data
- Numerous evaluation possibilities: different alignment functions, ISO-based standards, 3DF roughness parameters, volume calculations, form filter, 3DF Fourier analysis, profile intersections, photo simulation, step height analysis
- Distance and angle measurements from freely selectable profile points
- Fast and easy generation of measurement protocols
- Tolerance input with automatic inspection of the measuring results
- Various means of data output (SPC, Excel, etc.)
- Password protection
- Extensive help menu
Furniture design

Different system furniture for different demands. The right strategy for each customer requirement.

Standard: SD version
- Simple design
 - Granite – columns – tracer driver
- Low cost
- Compact design permits various table versions
- For all Contourecord and Surfcom systems

DX version fully enclosed
- Integrated, fully covered design requires little space
- Integrated anti-vibration table
- Simple location change without additional service expenses
- Modularly expandable
- Maximum performance
- Ergonomic design
- For all Contourecord and Surfcom systems

Integrated furniture design
- Modern design permits various applications
- Integratable, active anti-vibration elements
- Ergonomic design
- Perfect design
- For all Contourecord and Surfcom systems
Technical data

<table>
<thead>
<tr>
<th>X tracer driver</th>
<th>Contour</th>
<th>Contour 2700</th>
<th>Surface</th>
<th>Contour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traversing stroke</td>
<td>100 mm (200 mm)</td>
<td>100 mm (200 mm)</td>
<td>100 mm (200 mm)</td>
<td>100 mm (200 mm)</td>
</tr>
<tr>
<td>Straightness accuracy</td>
<td>1 µm/100 mm</td>
<td>1 µm/100 mm</td>
<td>0.05 + (L/1000) µm</td>
<td>1 µm/100 mm</td>
</tr>
<tr>
<td>Measuring speed</td>
<td>0.03 – 20 mm/s</td>
<td>0.03 – 20 mm/s</td>
<td>0.03 – 20 mm/s</td>
<td>0.03 – 20 mm/s</td>
</tr>
<tr>
<td>Travel speed</td>
<td>0.03 – 60 mm/s</td>
<td>0.03 – 60 mm/s</td>
<td>0.03 – 60 mm/s</td>
<td>0.03 – 60 mm/s</td>
</tr>
<tr>
<td>Measuring principle</td>
<td>Linear motor with glass scale</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± (1 + 2 L/1000) µm</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.04 µm</td>
<td>0.04 µm</td>
<td>0.04 µm</td>
<td>0.04 µm</td>
</tr>
<tr>
<td>Max. number of measuring points</td>
<td>100,000 (max. 10 profiles)</td>
<td>100,000 (max. 10 profiles)</td>
<td>32,000</td>
<td>100,000 (max. 10 profiles)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detector and stylus system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
</tr>
<tr>
<td>Measuring principle</td>
</tr>
<tr>
<td>Linear accuracy</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stylus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring force</td>
</tr>
<tr>
<td>Stylus tip radius</td>
</tr>
<tr>
<td>Stylus tip material</td>
</tr>
<tr>
<td>Follow-up angle</td>
</tr>
<tr>
<td>Lifting of the test arm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z Column height</td>
</tr>
<tr>
<td>Travel speed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions of the standard base plate</td>
</tr>
<tr>
<td>Material for standard base plate</td>
</tr>
<tr>
<td>Max. base plate load capacity</td>
</tr>
<tr>
<td>Total weight</td>
</tr>
<tr>
<td>Power Supply</td>
</tr>
</tbody>
</table>

Accuracy information based on environmental temperature of 20 °C ± 2 °C
Subject to change as a result of technical modifications and required export licenses
L = measuring length in mm
H = measuring height in mm

<table>
<thead>
<tr>
<th>Y table for 3DF surface topography</th>
<th>Y Driver for 3df surface topography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traversing stroke</td>
<td>50 mm (100 mm, 200 mm)</td>
</tr>
<tr>
<td>Length of the measured distance</td>
<td>0.001 mm – 10 mm</td>
</tr>
<tr>
<td>Number of single-measured distances</td>
<td>2 – 2000</td>
</tr>
<tr>
<td>Number of measuring points</td>
<td>Max. 64 million</td>
</tr>
<tr>
<td>Straightness accuracy</td>
<td>0.05 + 3H/10000 µm</td>
</tr>
<tr>
<td>Table size</td>
<td>80 mm x 120 mm</td>
</tr>
<tr>
<td>Max. load capacity</td>
<td>5 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CNC tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traversing stroke</td>
</tr>
<tr>
<td>Travel speed</td>
</tr>
<tr>
<td>Position accuracy</td>
</tr>
<tr>
<td>Max. load capacity</td>
</tr>
<tr>
<td>Weight approx.</td>
</tr>
<tr>
<td>Surface</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Surfcom 1900</td>
</tr>
<tr>
<td>100 mm (200 mm)</td>
</tr>
<tr>
<td>0.05 + (\frac{L}{1000}) µm</td>
</tr>
<tr>
<td>0.03–3 mm/s roughness</td>
</tr>
<tr>
<td>0.03–60 mm/s</td>
</tr>
<tr>
<td>Linear motor with glass scale</td>
</tr>
<tr>
<td>(\pm \left(1 + \frac{2}{100} L \right)) µm</td>
</tr>
<tr>
<td>0.04 µm</td>
</tr>
<tr>
<td>32,000</td>
</tr>
<tr>
<td>100,000 (max. 10 profiles)</td>
</tr>
<tr>
<td>1000 µm standard stylus</td>
</tr>
<tr>
<td>0.5 %</td>
</tr>
<tr>
<td>20 nm/1,000 µm range</td>
</tr>
<tr>
<td>0.025 µm</td>
</tr>
<tr>
<td>25 mm (250 µm, 500 µm)</td>
</tr>
<tr>
<td>Automatic</td>
</tr>
<tr>
<td>100–240 V AC 50/60 Hz</td>
</tr>
</tbody>
</table>