Blade^{Pro} Efficient Evaluation of Turbine Blades

Blade

We make it visible.

Conveniently evaluate turbine blades with Blade^{Pro}

There are many different parameters and analyzing procedures available to evaluate the quality of turbine blades. Carl Zeiss gathered this information from several manufacturers during a comprehensive study. It provided the basis for the development of Blade^{Pro} software for the evaluation of turbine blade measurements.

A state-of-the-art XML interface enables two-way communication between Blade^{Pro} evaluation software and your existing system.

Blade^{Pro} - key advantages

Blade^{Pro} determines an extremely wide range of blade parameters from the measuring results, such as:

- Form deviation of the blade profile
- Maximum blade length and maximum blade thickness
- Corner radius of the entrance and exit edge
- Thickness of the entrance and exit edge
- Blade thickness at any point of the nominal profile
- Torsion angle of the blade
- Blade length parallel to the chord line
- Profile waviness

2

Batch point, center of gravity, mean line, etc.

Blade^{Pro} component concept

Blade^{Pro} - an overview

An algorithm patented for Carl Zeiss accounts for super-proportional length errors, enabling evaluation of tolerance-critical areas of entrance and exit edges.

Data exchange, data management

- Section-oriented evaluation aided by nominal data and measuring data from any measuring machine
- Flexible connection to measuring machines via XML file interface
- XML standard for data import and export

Graphical user interface

- Intuitive operation based on standard Windows[©] applications
- Protocol options: graphic, text, XML, HTML
- Graphic protocol system: DIN A4 A0 and corresponding ANSI formats
- Work interactively with protocol preview
- Flexible compilation and labeling of the sections of a document as a graphic
- Summarizing overview of several blade documents
- Free allocation of dynamic and static features for protocol identification

Adaptation

- Numerous configurations, e.g., graphic, print, data exchange, calculation
- Customized protocol forms and expansion of features

	Section A-A		
^	Characteristic Measures	>>>	
8.5	Thickness at Basic Distance	2.917	
27.4	Edge Asymmetry for Leading Edge	0.039	
54	Lean Location	0.003	
215	Chord Line Length	21.899	
61	Traiing Edge Radus	0.177	
284	Mean Edge Radius	0.866	
14	Twist Angle	2.071	
1.1	Bow Location	0.045	
115	Mean Edge Radius	0.325	
01	Maximum Thickness	3.006	
214	Maximum Length	21.993	
215	Extremal Deviation	-0.018	
61	Leading Edge Radius	0.463	

Characteristic Positions

<u>^</u>	Best Fit	>>>	
Tschebyschelf L1 Weighted Gauss Gauss	Elongatio Z Rota Leadi Trailin Trans	Elongation Transformation Z Rotation Leading Edge Elongation Trailing Edge Elongation Translation	
z Rotation x Translation y Translation Best Fit Result	1.097 0.003 0.045 Succ	Perform Best Fit	

Carl Zeiss Industrial Metrology 73446 Oberkochen/Germany Sales: +49 1803 336 336 Service: +49 1803 336 337 Fax: +49 7364 203 870 E-mail: imt@zeiss.de Internet: www.zeiss.de/imt